

Alice Delia, PhD Prism Analytical Technologies a.delia@pati-air.com 989-772-5088

What's That Smell

Learning Objectives

The sense of Smell

Odor characteristics and thresholds

Identifying and detecting "odor" compounds

The Fascinating World of Odors

- Human nose can distinguish ~10,000 different odors
- Humans have relatively few odor receptors (384)
 - But cover same range
 - Less detail; human brain performs complex signal processing
- 1000x difference between least and most sensitive individuals

Food

Taste – nutritional content and possible presence of poisons

Taste Receptors

- Sweet → carbohydrates for energy
- Salt → electrolyte balance
- Savory → essential amino acids
- Sour → warning for fermentation
- Bitter → warning for poisons

Flavor is actually smell

- Ripe fruit esters
- Poisons & bacterial contamination amines and thiols
- Rotten fish trimethylamine
- Bad milk butyric acid

Survival

Natural sources

- Smoke
- Animal behavior
- Weather
- Some plants

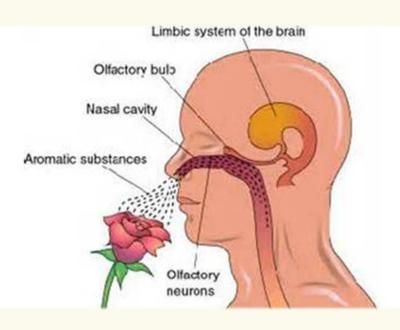
Man-made sources

- Natural gas thiol "cocktail"
- Exhaust fumes
- High chemical concentrations

Communication

Activities and Behaviors

- Defense
- Protection
- Territory
- Emotion, e.g., fear
- Attraction


Sources

- Sweat
- Urine or feces
- Pheromones
- Glands
- Injury

What's in a Nose

- Volatiles enter nose
- Activate receptors
 - Odor-binding proteins
 - Complex sequence of biochemical reactions
- Generate electrical signal
- Transmitted to brain
 - Olfactory bulb
 - Primary olfactory cortex
 - Orbitofrontal cortex

If I Only Had a Brain ...

- Compared to previously "stored" patterns
- Combined with other inputs
- Interpreted as odor

- No fixed reference points
- Character changes with concentration
- Most odors comprised of many chemical compounds

Odor Characteristics and Thresholds

Terms

Odorant – substance capable of eliciting an olfactory response Odor – sensation resulting from stimulation of the olfactory organs

Detection Threshold – 50% can identify presence of odor or odorant without characterizing it (smell something but can't say what it is)

Odor Threshold – concentration at which 50% of the individuals exposed to the odorant respond

Recognition Threshold – 50% identify odorant or odor

Odor Adaptation – process by which one becomes accustomed to odor Odor Fatigue – total adaptation occurred through prolonged exposure Odor Tenacity – persistence; time odor remains perceptible

What's the Difference: Odor vs Chemical

- Odors are perception of the physiological process
- Chemicals (VOCs) are what starts that process
- Odors and physical symptoms are both effects
- Odor compound may or may not be responsible for physical symptoms; there is no specific relationship linking the odor to other effects

Odor Detection

Physical conditions

- Volatility < ~18-20 carbons (light semi-volatile)
- Chemical structure
- Humidity

Individual conditions

- Age
- Medical conditions
- Smoking, alcohol
- Diet
- Occupation

Odor Threshold

Common chemical compounds

9 *	 Sulfur dioxide

0.47 Rotten eggs Hydrogen sulfide

210 Sulfide Carbon disulfide

210 Green/sweet Acetaldehyde

1000 Pungent Formaldehyde

2.1 Pungent Methyl mercaptan

47 Medicinal Phenol

0.21 Fishy, pungent Trimethyl amine

210 Burnt sweet Acrolein

^{*} All concentrations are in parts per billion (ppb)

Odor Character

Different methods for determining character

- Musky perfume/aftershave
- Putrid rotten eggs
- Pungent vinegar
- Camphor mothballs
- Ethereal dry cleaning
- Floral roses
- Peppermint minty

Strength

Scale – 1 through 6

Identifying and Detecting "Odor" Compounds

Wet Dog

Combination of non "wet dog" odorants

almond benzaldehyde

honey/floral Phenylacetaldehyde

fruity/musty Acetaldehyde

medicinal Phenol

musty/nutty 2-methylbutanal

faecal p-cresol

sulfurous dimethyl trisulfide

mushroom 1-octen-3-ol

fruity 2-nonanone

earthy 2,3-diethyl-5-methylpyrazine

Coffee

1000s of chemical compounds Only a few contribute to aroma

roasted (coffee) 2-furfurlthiol

sulfurous, amine 3-methyl-2-buten-1-thiol

catty, roasted 3-mercapto-3-methylbutylformate

rotten cabbage methanethiol

floral, spicy methylpropanal

fruity, malty 3-methylbutanal

pungent, fruity acetaldehyde

honey, fruity b-damascenone

smoky, spicy guaiacol

sweet, caramel furaneol

earthy 2-isobutyl-3-methoxypyrazine

earthy, roasted 2-ethyl-3,5-dimethylpyrazine

Fresh-Cut Grass

Grass emits VOCs naturally

Certain VOCs increase when cut

- Defense
- Protection
- Infection

Specific VOCs

3-Hexenyl acetate
250 ppb odor threshold

3-Hexenal

Methanol

3-Hexen-1-ol

2-Hexenal

Testing for Odors

Sensory methods (sniff it)

- Concentration
- Intensity
- Character

Laboratory Methods

- Gas Chromatograph-Mass Spectrometer (GC-MS)
- Olfactometer
 - Device with a "smell" port
 - Paired with GC-MS
- Electronic "nose"

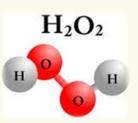
Treatment of Odors

Removal

Ventilation

Capture

- Adsorption/Absorption
 - activated carbon
 - synthetic adsorbent polymers (e.g., Ambersorb)
 - baking soda (sodium bicarbonate)
 - ion exchange resins
 - microorganisms (somewhat selective)
- Encapsulation
- Blocking
 - sealer (e.g., epoxy, shellac, polyurethane, varnish, etc.)
 - masks, filters or nostril plugs



Treatment of Odors cont.

Conversion

- Chemical oxidation
 - sodium hypochlorite, hydrogen peroxide, ozone*
- Thermal oxidation
 - high heat
- Neutralizers

Deodorizing

- Air: aerosolizing, fuming, misting, adsorption and absorption
- Surface: cleaning, scrubbing, chemical and biological methods

Masking

Addition of pleasant odor

Wrap Up

The sense of Smell

- Food, Survival, Communication
- The process
 - Volatiles enter nose
 - Activate receptors
 - Generate electrical signal
 - Transmit to brain
 - Brain "interprets" odor based on previous experiences

Odors are perception of the physiological process

Wrap Up

Odor characteristics and thresholds

- Odor Threshold: Odor detection → Odor recognition
 - < 1 ppb to 1000s of ppm
- Odor Character: Sweet; Floral; Pungent; Musky; etc.
- Odor compound may or may not be responsible for physical symptoms; there is no specific relationship linking the odor to other effects
 - Odors and physical symptoms are both effects

Wrap Up

Identifying and detecting "odor" compounds

- Most are mixture
- Same chemical compounds contribute to very different odors
- Lot of Treatment options
 - Remove
 - Ventilate
 - Capture
 - Convert
 - Deodorize
 - Mask

References

3M Respirator Selection Guide

CompoundChem; <u>www.CompoundChem.com</u>

C.S. Sell; Chemistry and the Sense of Smell; 2014

Odor as an aid to chemical safety, J App Toxicology, vol 3, no 6, 1983.

Gregory Leonardos, David Kendall & Nancy Barnard; Odor Threshold Determinations of 53 Odorant Chemicals, J Air Pollution Control Assn, 19:2, 91-95, 1969.

J.H. Ruth, Odor Thresholds and Irritation Levels of Several Chemical Substances: A Review, 1986.

Questions?

Dr. Alice Delia a.delia@pati-air.com

